Scherk-like translators for mean curvature flow

نویسندگان

چکیده

We prove existence and uniqueness for a two-parameter family of translators mean curvature flow. get additional examples by taking limits at the boundary parameter space. Some resemble well-known minimal surfaces (Scherk’s doubly periodic surfaces, helicoids), but others have no surface analogs. A one-parameter subfamily (the pitchforks) finite topology quadratic area growth, thus might arise as blowups singularities initially smooth, closed flowing

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mean Curvature Blowup in Mean Curvature Flow

In this note we establish that finite-time singularities of the mean curvature flow of compact Riemannian submanifolds M t →֒ (N, h) are characterised by the blow up of the mean curvature.

متن کامل

Mean curvature flow

Mean curvature flow is the negative gradient flow of volume, so any hypersurface flows through hypersurfaces in the direction of steepest descent for volume and eventually becomes extinct in finite time. Before it becomes extinct, topological changes can occur as it goes through singularities. If the hypersurface is in general or generic position, then we explain what singularities can occur un...

متن کامل

Riemannian Mean Curvature Flow

In this paper we explicitly derive a level set formulation for mean curvature flow in a Riemannian metric space. This extends the traditional geodesic active contour framework which is based on conformal flows. Curve evolution for image segmentation can be posed as a Riemannian evolution process where the induced metric is related to the local structure tensor. Examples on both synthetic and re...

متن کامل

Local Techniques for Mean Curvature Flow

of ann-dimensional manifold without boundary into Euclidean space. We say Af = x(Mn) moves by mean curvature if there exists a one-parameter family Xt = x( ·, t) of immersions with corresponding images J..!I1 = x 1(lvfn) satisfying d dtx(p,t) = -H(p,t)v(p,t) (1) x(p,O) = xo(P) for some initial data xo. Here H(p,t) and v(p,t) denote mean curvature and outer unit normal of the hypersurface M 1 at...

متن کامل

The Mean Curvature Flow for Isoparametric Submanifolds

A submanifold in space forms is isoparametric if the normal bundle is flat and principal curvatures along any parallel normal fields are constant. We study the mean curvature flow with initial data an isoparametric submanifold in Euclidean space and sphere. We show that the mean curvature flow preserves the isoparametric condition, develops singularities in finite time, and converges in finite ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Differential Geometry

سال: 2022

ISSN: ['1945-743X', '0022-040X']

DOI: https://doi.org/10.4310/jdg/1675712995